On the number of transversals and multiplexes in iterated quasigroups

Anna Taranenko

Sobolev Institute of Mathematics, Novosibirsk State University Novosibirsk, Russia

Graphs and Groups, Representations and Relations Novosibirsk, Russia, 2018

A pair G = (X, *) is a binary quasigroup of order n if |X| = n and

$$\forall a, b \in X \quad \exists ! x, y \in X : \ a * x = b, \ y * a = b.$$

A pair G = (X, *) is a binary quasigroup of order n if |X| = n and

$$\forall a, b \in X \ \exists ! x, y \in X : \ a * x = b, \ y * a = b.$$

The Cayley table of a binary quasigroup G = a latin square L(G).

A pair G = (X, *) is a binary quasigroup of order n if |X| = n and

$$\forall a, b \in X \quad \exists ! x, y \in X : \ a * x = b, \ y * a = b.$$

The Cayley table of a binary quasigroup G = a latin square L(G).

The Cayley table of a binary quasigroup G of order 4

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

A pair G = (X, *) is a binary quasigroup of order n if |X| = n and

$$\forall a, b \in X \ \exists ! x, y \in X : \ a * x = b, \ y * a = b.$$

The Cayley table of a binary quasigroup G = a latin square L(G).

The Cayley table of a binary quasigroup G of order 4

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

A latin square of order n is an $n \times n$ table filled by n symbols so that each line contains all n symbols.

A *d*-ary quasigroup f of order n is a d-ary operation on a set X of size n such that the equation $f(x_1,...,x_d)=x_0$ has a unique solution for any one variable if all other d variables are specified arbitrarily.

A *d*-ary quasigroup f of order n is a d-ary operation on a set X of size n such that the equation $f(x_1,...,x_d)=x_0$ has a unique solution for any one variable if all other d variables are specified arbitrarily.

The Cayley table of a d-ary quasigroup f of order n=a d-dimensional latin hypercube Q(f) of order n.

A *d*-ary quasigroup f of order n is a d-ary operation on a set X of size n such that the equation $f(x_1,...,x_d)=x_0$ has a unique solution for any one variable if all other d variables are specified arbitrarily.

The Cayley table of a d-ary quasigroup f of order n=a d-dimensional latin hypercube Q(f) of order n.

A 3-dimensional latin hypercube of order 4

A *d*-ary quasigroup f of order n is a d-ary operation on a set X of size n such that the equation $f(x_1,...,x_d)=x_0$ has a unique solution for any one variable if all other d variables are specified arbitrarily.

The Cayley table of a d-ary quasigroup f of order n=a d-dimensional latin hypercube Q(f) of order n.

A 3-dimensional latin hypercube of order 4

If $I_n^d = \{(\alpha_1, \ldots, \alpha_d) : \alpha_i \in \{0, \ldots, n-1\}\}$ then a *d*-dimensional matrix A of order n is an array $(a_\alpha)_{\alpha \in I_n^d}$, $a_\alpha \in \mathbb{R}$. A line is a 1-dimensional submatrix of A, and a hyperplane is a (d-1)-dimensional submatrix. A *d*-dimensional latin hypercube of order n is a multidimensional matrix filled by n symbols so that each line contains all different symbols.

Given a binary quasigroup G = (X, *) of order n, the d-iterated quasigroup $G^{[d]}$ is a d-ary quasigroup $f^{[d]}(x_1, \ldots, x_d)$ of order n such that

Given a binary quasigroup G=(X,*) of order n, the d-iterated quasigroup $G^{[d]}$ is a d-ary quasigroup $f^{[d]}(x_1,\ldots,x_d)$ of order n such that

$$f^{[2]}(x_1, x_2) = x_1 * x_2, \qquad f^{[i]}(x_1, \dots, x_i) = f^{[i-1]}(x_1, \dots, x_{i-1}) * x_i.$$

Given a binary quasigroup G = (X, *) of order n, the d-iterated quasigroup $G^{[d]}$ is a d-ary quasigroup $f^{[d]}(x_1, \ldots, x_d)$ of order n such that

$$f^{[2]}(x_1,x_2)=x_1*x_2, \qquad f^{[i]}(x_1,\ldots,x_i)=f^{[i-1]}(x_1,\ldots,x_{i-1})*x_i.$$

The Cayley table of a binary quasigroup G of order 4

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Given a binary quasigroup G = (X, *) of order n, the d-iterated quasigroup $G^{[d]}$ is a d-ary quasigroup $f^{[d]}(x_1, \ldots, x_d)$ of order n such that

$$f^{[2]}(x_1,x_2)=x_1*x_2, \qquad f^{[i]}(x_1,\ldots,x_i)=f^{[i-1]}(x_1,\ldots,x_{i-1})*x_i.$$

The Cayley table of a binary quasigroup G of order 4

0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

The Cayley table of the 3-iterated 3-ary quasigroup $G^{[3]}$

 0
 1
 2
 3
 1
 0
 3
 2
 2
 3
 0
 1
 3
 2
 1
 0

 1
 0
 3
 2
 0
 1
 2
 3
 3
 2
 1
 0
 2
 3
 0
 1

 2
 3
 0
 1
 3
 2
 1
 0
 0
 1
 2
 3
 1
 0
 3
 2

 3
 2
 1
 0
 2
 3
 0
 1
 1
 0
 3
 2
 0
 1
 2
 3

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the corresponding d-ary quasigroup f of order n)

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by K exactly k times.

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by K exactly k times.

A transversal is a 1-plex.

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by Kexactly *k* times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

- **1** 0 **3** 2
- 3 **2** 0 **1**

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by K exactly k times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

0	1	2	3	0	1	2	3	1	0	3	2	2	3	0	1	3	2	1	0	
1	0	3	2	1	0	3	2	0	1	2	3	3	2	1	0	2	3	0	1	
3	2	0	1	2	3	0	1	3	2	1	0	0	1	2	3	1	0	3	2	
2	3	1	0	3	2	1	0	2	3	0	1	1	0	3	2	0	1	2	3	

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by K exactly k times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

Trivial upper bound on the number of k-multiplexes: $\left(\frac{(kn)!}{k!^n}\right)^d$.

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n$$
;

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n$$
;

- 0 1
- 1 0

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n$$
;

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n;$$

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

Consider the Cayley table Q of the d-iterated group $\mathbb{Z}_n^{[d]}$

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n;$$

Let a multiset $\{\alpha^1, \dots, \alpha^{kn}\}$ be k-multiplex in $\mathbb{Z}_n^{[d]}$.

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

Consider the Cayley table Q of the d-iterated group $\mathbb{Z}_n^{[d]}$

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n;$$

Let a multiset $\{\alpha^1, \dots, \alpha^{kn}\}$ be k-multiplex in $\mathbb{Z}_n^{[d]}$.

$$\sum_{i=1}^{kn} q_{\alpha^i} = k \frac{n(n-1)}{2} \not\equiv 0 \mod n.$$

Proposition

If k is odd and d and n are even then there exist d-dimensional latin hypercubes of order n with no k-multiplexes.

Linear construction

Consider the Cayley table Q of the d-iterated group $\mathbb{Z}_n^{[d]}$

$$q_{\alpha} = \alpha_1 + \ldots + \alpha_d \mod n;$$

Let a multiset $\{\alpha^1, \dots, \alpha^{kn}\}$ be k-multiplex in $\mathbb{Z}_n^{[d]}$.

$$\sum_{i=1}^{kn} q_{\alpha^i} = k \frac{n(n-1)}{2} \not\equiv 0 \mod n.$$

$$\sum_{i=1}^{kn} (\alpha_1^i + \ldots + \alpha_d^i) = dk \frac{n(n-1)}{2} \equiv 0 \mod n.$$

Theorem (T., 2015; Glebov, Luria, 2016)

The maximum number of transversals in d-dimensional latin hypercubes of order n is asymptotically equal to

$$\frac{n!^{d-1}}{e^n}(1+o(1))^n \text{ as } n\to\infty.$$

Theorem (T., 2015; Glebov, Luria, 2016)

The maximum number of transversals in d-dimensional latin hypercubes of order n is asymptotically equal to

$$\frac{n!^{d-1}}{e^n}(1+o(1))^n \text{ as } n\to\infty.$$

Theorem (Eberhard, 2017+)

If G is an abelian group of order n and (d+1) $\sum g=0$ then the number of transversals in the d-iterated group $G^{[d]}$ is asymptotically equal to

$$\frac{n!^{d-1}}{e^n}(1+o(1))^n \text{ as } n\to\infty,$$

otherwise it has no transversals.

Question

Do iterated quasigroups of fixed order and large dimension have asymptotically maximum number of transversals?

Question

Do iterated quasigroups of fixed order and large dimension have asymptotically maximum number of transversals?

Conjecture (Ryser, 1967)

Every latin square of odd order has a transversal.

Question

Do iterated quasigroups of fixed order and large dimension have asymptotically maximum number of transversals?

Conjecture (Ryser, 1967)

Every latin square of odd order has a transversal.

Conjecture (Wanless, 2011)

Every latin hypercube of odd dimension or odd order has a transversal.

Question

Do iterated quasigroups of fixed order and large dimension have asymptotically maximum number of transversals?

Conjecture (Ryser, 1967)

Every latin square of odd order has a transversal.

Conjecture (Wanless, 2011)

Every latin hypercube of odd dimension or odd order has a transversal.

Conjecture (Rodney)

Every latin square contains a 2-plex.

Main results

Theorem (T., 2018+)

Let G be a binary quasigroup of order n.

• For all odd d the d-iterated quasigroup $G^{[d]}$ has a k-multiplex. If for some even d' the quasigroup $G^{[d']}$ has a k-multiplex then quasigroups $G^{[d]}$ contain k-multiplexes for all d > d'.

Main results

Theorem (T., 2018+)

Let G be a binary quasigroup of order n.

- For all odd d the d-iterated quasigroup $G^{[d]}$ has a k-multiplex. If for some even d' the quasigroup $G^{[d']}$ has a k-multiplex then quasigroups $G^{[d]}$ contain k-multiplexes for all $d \ge d'$.
- ② There exists a constant c = c(G, k) such that if $G^{[d]}$ has a k-multiplex then for large d it has asymptotically $c\left(\frac{(kn)!}{k!^n}\right)^d$ k-multiplexes.

Main results

Theorem (T., 2018+)

Let G be a binary quasigroup of order n.

- For all odd d the d-iterated quasigroup $G^{[d]}$ has a k-multiplex. If for some even d' the quasigroup $G^{[d']}$ has a k-multiplex then quasigroups $G^{[d]}$ contain k-multiplexes for all $d \ge d'$.
- ② There exists a constant c = c(G, k) such that if $G^{[d]}$ has a k-multiplex then for large d it has asymptotically $c\left(\frac{(kn)!}{k!^n}\right)^d$ k-multiplexes.

Trivial upper bound on the number of k-multiplexes: $\left(\frac{(kn)!}{k!^n}\right)^d$.

Main results

Corollary (T., 2018+)

Let G be a binary quasigroup of order n.

- For all odd d the d-iterated quasigroup $G^{[d]}$ has a transversal. If for some even d' the quasigroup $G^{[d']}$ has a transversal then quasigroups $G^{[d]}$ contain transversals for all d > d'.
- ② There exists a constant c = c(G) such that if $G^{[d]}$ has a transversal then for large d it has asymptotically $cn!^{d-1}$ transversals.

Main results

Corollary (T., 2018+)

Let G be a binary quasigroup of order n.

- For all odd d the d-iterated quasigroup $G^{[d]}$ has a transversal. If for some even d' the quasigroup $G^{[d']}$ has a transversal then quasigroups $G^{[d]}$ contain transversals for all $d \geq d'$.
- ② There exists a constant c = c(G) such that if $G^{[d]}$ has a transversal then for large d it has asymptotically $cn!^{d-1}$ transversals.

Corollary (T., 2018+)

For a given binary quasigroup G and large d, a typical k-multiplex in the d-iterated quasigroup $G^{[d]}$ is a k-plex that cannot be partitioned into smaller plexes.

Inception of transversals

0 3 1 2 3 0 2 1 2 1 0 3 1 2 3 0

Inception of transversals

```
3
                                     3
                                              2
                             0
                                                      3
        0
                                     0
                                                               2
3
                                                      3
                             3
                                                               0
        3
                    3
                                 3
                                         0
                                              2
                                                      0
                                                               3
        0
                3
                                      3
                                              0
                                                  0
                                                          3
                                                               1
        3
                                                               3
                                                               0
2
                                                               0
                                              2
                                                      2
                                              3
                                                      3
```

A diagonal in a *d*-dimensional latin hypercube Q is a set $I = (\alpha^1, \dots, \alpha^n)$ hitting each hyperplane exactly ones.

A diagonal in a *d*-dimensional latin hypercube Q is a set $I = (\alpha^1, \dots, \alpha^n)$ hitting each hyperplane exactly ones.

A *d*-dimensional latin hypercube of order n has $n!^{d-1}$ diagonals, and some of them are transversals.

A diagonal in a *d*-dimensional latin hypercube Q is a set $I = (\alpha^1, \dots, \alpha^n)$ hitting each hyperplane exactly ones.

A *d*-dimensional latin hypercube of order n has $n!^{d-1}$ diagonals, and some of them are transversals.

Given a multiset U of size n over a quasigroup G, denote by $t_U(d)$ the number of diagonals $I=(\alpha^1,\ldots,\alpha^n)$ in the Cayley table Q of $G^{[d]}$ such that $U=\{q_{\alpha^1},\ldots,q_{\alpha^n}\}$.

A diagonal in a *d*-dimensional latin hypercube Q is a set $I = (\alpha^1, \dots, \alpha^n)$ hitting each hyperplane exactly ones.

A *d*-dimensional latin hypercube of order n has $n!^{d-1}$ diagonals, and some of them are transversals.

Given a multiset U of size n over a quasigroup G, denote by $t_U(d)$ the number of diagonals $I=(\alpha^1,\ldots,\alpha^n)$ in the Cayley table Q of $G^{[d]}$ such that $U=\{q_{\alpha^1},\ldots,q_{\alpha^n}\}$.

$$t_U(d) = \sum_V b_{U,V} t_V(d-1),$$

where $b_{U,V}$ is the number of permutations W on G for which

$$U = V * W$$
.

$$\mathbb{Z}_5^{[1]} = 0 \ 1 \ 2 \ 3 \ 4$$
 $t_{01234}(1) = 1; \quad t_U(1) = 0$ for all other $U.$

$$\mathbb{Z}_5^{[1]} = 0 \ 1 \ 2 \ 3 \ 4$$
 $t_{01234}(1) = 1; \quad t_U(1) = 0$ for all other U . $\mathbb{Z}_5^{[2]} = 2 \ 3 \ 4 \ 0 \ 1 \ 2 \ 3 \ 4 \ 0 \ 1 \ 2 \ 4 \ 0 \ 1 \ 2 \ 3$ $t_{01234}(2) = 15 = 15 \cdot t_{01234}(1)$.

$$t_{00000}(2) = \ldots = t_{44444}(2) = 1 = 1 \cdot t_{01234}(1).$$

$$\mathbb{Z}_5^{[1]}=0$$
 1 2 3 4 $t_{01234}(1)=1;$ $t_U(1)=0$ for all other $U.$ $\mathbb{Z}_5^{[2]}=2$ 3 4 0 1 2 4 0 1 2 3

$$t_{00014}(2) = t_{00023}(2) = \dots = t_{44403}(2) = t_{44412}(2) = 5 = 5 \cdot t_{01234}(1).$$

$$t_{00113}(2) = t_{11224}(2) = t_{22330}(2) = t_{33441}(2) = t_{00442}(2) = 10 = 10 \cdot t_{01234}(1)$$
.

$$t_{01234}(2) = 15 \cdot t_{01234}(1);$$

$$t_{00000}(2) = \dots = t_{44444}(2) = 1 \cdot t_{01234}(1);$$

$$t_{00014}(2) = t_{00023}(2) = \dots = t_{44403}(2) = t_{44412}(2) = 5 \cdot t_{01234}(1);$$

$$t_{00113}(2) = t_{11224}(2) = t_{22330}(2) = t_{33441}(2) = t_{00442}(2) = 10 \cdot t_{01234}(1);$$

$$t_{U}(2) = 0 \text{ for all other } U.$$

$$y_1(2) = t_{01234}(2) = 15;$$

$$y_2(2) = t_{00000}(2) + \dots + t_{44444}(2) = 5;$$

$$y_3(2) = t_{00014}(2) + t_{00023}(2) + \dots + t_{44403}(2) + t_{44412}(2) = 50;$$

$$y_4(2) = t_{00113}(2) + t_{11224}(2) + t_{22330}(2) + t_{33441}(2) + t_{00442}(2) = 50.$$

$$y_1(2) = 15 \cdot y_1(1);$$

 $y_2(2) = 5 \cdot y_1(1);$
 $y_3(2) = 50 \cdot y_1(1);$
 $y_4(2) = 50 \cdot y_1(1).$

$$y_1(2) = 15 \cdot y_1(1);$$

 $y_2(2) = 5 \cdot y_1(1);$
 $y_3(2) = 50 \cdot y_1(1);$
 $y_4(2) = 50 \cdot y_1(1).$

Do the same for transversals in the 3-iterated group $\mathbb{Z}_5^{[3]}\dots$

$$y_1(2) = 15 \cdot y_1(1);$$

 $y_2(2) = 5 \cdot y_1(1);$
 $y_3(2) = 50 \cdot y_1(1);$
 $y_4(2) = 50 \cdot y_1(1).$

Do the same for transversals in the 3-iterated group $\mathbb{Z}_5^{[3]}\dots$

$$y_1(3) = 15 \cdot y_1(2) + 120 \cdot y_2(2) + 30 \cdot y_3(2) + 20 \cdot y_4(2);$$

$$y_2(3) = 5 \cdot y_1(2);$$

$$y_3(3) = 50 \cdot y_1(2) + 30 \cdot y_3(2) + 40 \cdot y_4(2);$$

$$y_4(3) = 50 \cdot y_1(2) + 60 \cdot y_3(2) + 60 \cdot y_4(2).$$

$$\begin{pmatrix} y_1(d) \\ y_2(d) \\ y_3(d) \\ y_4(d) \end{pmatrix} = \begin{pmatrix} 15 & 120 & 30 & 20 \\ 5 & 0 & 0 & 0 \\ 50 & 0 & 30 & 40 \\ 50 & 0 & 60 & 60 \end{pmatrix} \begin{pmatrix} y_1(d-1) \\ y_2(d-1) \\ y_3(d-1) \\ y_4(d-1) \end{pmatrix};$$

$$\begin{pmatrix} y_1(d) \\ y_2(d) \\ y_3(d) \\ y_4(d) \end{pmatrix} = \begin{pmatrix} 15 & 120 & 30 & 20 \\ 5 & 0 & 0 & 0 \\ 50 & 0 & 30 & 40 \\ 50 & 0 & 60 & 60 \end{pmatrix} \begin{pmatrix} y_1(d-1) \\ y_2(d-1) \\ y_3(d-1) \\ y_4(d-1) \end{pmatrix};$$
$$Y(d) = A(\mathbb{Z}_5)Y(d-1).$$

$$\begin{pmatrix} y_{1}(d) \\ y_{2}(d) \\ y_{3}(d) \\ y_{4}(d) \end{pmatrix} = \begin{pmatrix} 15 & 120 & 30 & 20 \\ 5 & 0 & 0 & 0 \\ 50 & 0 & 30 & 40 \\ 50 & 0 & 60 & 60 \end{pmatrix} \begin{pmatrix} y_{1}(d-1) \\ y_{2}(d-1) \\ y_{3}(d-1) \\ y_{4}(d-1) \end{pmatrix};$$
$$Y(d) = A(\mathbb{Z}_{5})Y(d-1).$$

The number of transversals T(d) in the d-iterated group $\mathbb{Z}_5^{[d]}$ is the first component of the vector Y(d) obtained as the result of process

$$Y(d) = A(\mathbb{Z}_5)Y(d-1),$$

where matrix $A(\mathbb{Z}_5)$ does not depend on d and is derived from only the group \mathbb{Z}_5 .

Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G) has column sums n! and (after normalization) defines an irreducible Markov process with period at most 2.

Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G) has column sums n! and (after normalization) defines an irreducible Markov process with period at most 2.

Ergodic theorem

A Markov process with transition matrix A is irreducible and aperiodic if and only if it converges to the stationary distribution with all nonzero components.

Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G) has column sums n! and (after normalization) defines an irreducible Markov process with period at most 2.

Ergodic theorem

A Markov process with transition matrix A is irreducible and aperiodic if and only if it converges to the stationary distribution with all nonzero components.

The stationary distribution for an ergodic process with a matrix A is the eigenvector of A for the largest eigenvalue.

$$Y(d) = A(\mathbb{Z}_5)Y(d-1);$$

$$A(\mathbb{Z}_5) = \left(\begin{array}{cccc} 15 & 120 & 30 & 20 \\ 5 & 0 & 0 & 0 \\ 50 & 0 & 30 & 40 \\ 50 & 0 & 60 & 60 \end{array}\right).$$

The process defined by $A(\mathbb{Z}_5)$ is aperiodic.

$$Y(d) = A(\mathbb{Z}_5)Y(d-1);$$

$$A(\mathbb{Z}_5) = \left(\begin{array}{cccc} 15 & 120 & 30 & 20 \\ 5 & 0 & 0 & 0 \\ 50 & 0 & 30 & 40 \\ 50 & 0 & 60 & 60 \end{array}\right).$$

The process defined by $A(\mathbb{Z}_5)$ is aperiodic.

The number of transversals T(d) in the d-iterated group $\mathbb{Z}_5^{[d]}$ converges to $c \cdot 120^{d-1}$, where c > 0 is the first component of the normalized eigenvector $1/125(24,1,40,60)^T$ for the largest eigenvalue $\lambda = 120$ of the matrix $A(\mathbb{Z}_5)$.

$$Y(d) = A(\mathbb{Z}_5)Y(d-1);$$

$$A(\mathbb{Z}_5) = \left(\begin{array}{cccc} 15 & 120 & 30 & 20 \\ 5 & 0 & 0 & 0 \\ 50 & 0 & 30 & 40 \\ 50 & 0 & 60 & 60 \end{array}\right).$$

The process defined by $A(\mathbb{Z}_5)$ is aperiodic.

The number of transversals T(d) in the d-iterated group $\mathbb{Z}_5^{[d]}$ converges to $c \cdot 120^{d-1}$, where c > 0 is the first component of the normalized eigenvector $1/125(24,1,40,60)^T$ for the largest eigenvalue $\lambda = 120$ of the matrix $A(\mathbb{Z}_5)$.

$$T(d) = \frac{24}{125} \cdot 120^{d-1} (1 + o(1)).$$

Number of transversals in *d*-iterated groups and quasigroups of small order

$G \setminus d$	even	odd
\mathbb{Z}_2	0	2^{d-1}
\mathbb{Z}_3	$\frac{2}{3} \cdot 6^{d-1} - 3^{d-2}$	$2/3 \cdot 6^{d-1} + 3^{d-2}$
\mathbb{Z}_4	0	$3/8 \cdot 24^{d-1} + 5 \cdot 8^{d-2}$
\mathbb{Z}_2^2	$3/8 \cdot 24^{d-1} - 8^{d-2}$	$3/8 \cdot 24^{d-1} + 5 \cdot 8^{d-2}$
G ₄	$3/32 \cdot 24^{d-1}(1+o(1))$	
\mathbb{Z}_5	$^{24}/_{125} \cdot 120^{d-1}(1+o(1))$	
G_5	$\frac{24}{625} \cdot 120^{d-1} (1 + o(1))$	

Number of transversals in *d*-iterated groups and quasigroups of small order

$G \setminus d$	even	odd
\mathbb{Z}_2	0	2^{d-1}
\mathbb{Z}_3	$2/3 \cdot 6^{d-1} - 3^{d-2}$	$2/3 \cdot 6^{d-1} + 3^{d-2}$
\mathbb{Z}_4	0	$3/8 \cdot 24^{d-1} + 5 \cdot 8^{d-2}$
\mathbb{Z}_2^2	$3/8 \cdot 24^{d-1} - 8^{d-2}$	$3/8 \cdot 24^{d-1} + 5 \cdot 8^{d-2}$
G ₄	$3/32 \cdot 24^{d-1}(1+o(1))$	
\mathbb{Z}_5	$^{24/_{125}} \cdot 120^{d-1}(1+o(1))$	
G_5	$^{24/625} \cdot 120^{d-1} (1 + o(1))$	

$$G_4^2 = \begin{array}{ccccc} 0 & 3 & 1 & 2 \\ 3 & 0 & 2 & 1 \\ 2 & 1 & 0 & 3 \\ 1 & 2 & 3 & 0 \end{array}$$

Number of transversals in d-iterated groups and quasigroups of small order

$G \setminus d$	even	odd
\mathbb{Z}_2	0	2^{d-1}
\mathbb{Z}_3	$\frac{2}{3} \cdot 6^{d-1} - 3^{d-2}$	$2/3 \cdot 6^{d-1} + 3^{d-2}$
\mathbb{Z}_4	0	$3/8 \cdot 24^{d-1} + 5 \cdot 8^{d-2}$
\mathbb{Z}_2^2	$3/8 \cdot 24^{d-1} - 8^{d-2}$	$3/8 \cdot 24^{d-1} + 5 \cdot 8^{d-2}$
G ₄	$3/32 \cdot 24^{d-1}(1+o(1))$	
\mathbb{Z}_5	$24/_{125} \cdot 120^{d-1}(1+o(1))$	
G_5	$^{24/625} \cdot 120^{d-1} (1 + o(1))$	

Open questions

• How can we estimate the constant c(G, k) in general and for a given quasigroup G?

Open questions

- How can we estimate the constant c(G, k) in general and for a given quasigroup G?
- ② How are the constants c(G, k) for a given G related to each other for different k?

Open questions

- How can we estimate the constant c(G, k) in general and for a given quasigroup G?
- ② How are the constants c(G, k) for a given G related to each other for different k?
- **3** Does the *d*-iterated group $\mathbb{Z}_n^{[d]}$ have the maximum number of transversals (or *k*-plexes and *k*-multiplexes) among all *d*-iterated quasigroups of order *n* (if it is nonzero)?

Thank you for your attention!