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Definitions

A pair G = (X , ∗) is a binary quasigroup of order n if |X | = n and

∀a, b ∈ X ∃!x , y ∈ X : a ∗ x = b, y ∗ a = b.

The Cayley table of a binary quasigroup G = a latin square L(G ).

The Cayley table of a binary quasigroup G of order 4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

A latin square of order n is an n × n table filled by n symbols so that each
line contains all n symbols.
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Definitions
A d-ary quasigroup f of order n is a d-ary operation on a set X of size n
such that the equation f (x1, ..., xd) = x0 has a unique solution for any one
variable if all other d variables are specified arbitrarily.

The Cayley table of a d-ary quasigroup f of order n = a d-dimensional
latin hypercube Q(f ) of order n.

A 3-dimensional latin hypercube of order 4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

If I dn = {(α1, . . . , αd) : αi ∈ {0, . . . , n − 1}} then a d-dimensional matrix
A of order n is an array (aα)α∈I dn , aα ∈ R. A line is a 1-dimensional
submatrix of A, and a hyperplane is a (d − 1)-dimensional submatrix.
A d-dimensional latin hypercube of order n is a multidimensional matrix
filled by n symbols so that each line contains all different symbols.
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Definitions
Given a binary quasigroup G = (X , ∗) of order n, the d-iterated
quasigroup G [d ] is a d-ary quasigroup f [d ](x1, . . . , xd) of order n such that

f [2](x1, x2) = x1 ∗ x2, f [i ](x1, . . . , xi ) = f [i−1](x1, . . . , xi−1) ∗ xi .
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The Cayley table of the 3-iterated 3-ary quasigroup G [3]

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

Anna Taranenko Transversals in iterated quasigroups 4 / 26



Definitions
Given a binary quasigroup G = (X , ∗) of order n, the d-iterated
quasigroup G [d ] is a d-ary quasigroup f [d ](x1, . . . , xd) of order n such that

f [2](x1, x2) = x1 ∗ x2, f [i ](x1, . . . , xi ) = f [i−1](x1, . . . , xi−1) ∗ xi .

The Cayley table of a binary quasigroup G of order 4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The Cayley table of the 3-iterated 3-ary quasigroup G [3]

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

Anna Taranenko Transversals in iterated quasigroups 4 / 26



Definitions
Given a binary quasigroup G = (X , ∗) of order n, the d-iterated
quasigroup G [d ] is a d-ary quasigroup f [d ](x1, . . . , xd) of order n such that

f [2](x1, x2) = x1 ∗ x2, f [i ](x1, . . . , xi ) = f [i−1](x1, . . . , xi−1) ∗ xi .

The Cayley table of a binary quasigroup G of order 4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The Cayley table of the 3-iterated 3-ary quasigroup G [3]

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

Anna Taranenko Transversals in iterated quasigroups 4 / 26



Definitions
Given a binary quasigroup G = (X , ∗) of order n, the d-iterated
quasigroup G [d ] is a d-ary quasigroup f [d ](x1, . . . , xd) of order n such that

f [2](x1, x2) = x1 ∗ x2, f [i ](x1, . . . , xi ) = f [i−1](x1, . . . , xi−1) ∗ xi .

The Cayley table of a binary quasigroup G of order 4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The Cayley table of the 3-iterated 3-ary quasigroup G [3]

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

Anna Taranenko Transversals in iterated quasigroups 4 / 26



Definitions

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the
corresponding d-ary quasigroup f of order n)

is a multiset (a set) of kn
entries such that each hyperplane and each symbol of Q is covered by K
exactly k times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

0 1 2 3
1 0 3 2
3 2 0 1
2 3 1 0

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

1 0 3 2
0 1 2 3
3 2 1 0
2 3 0 1

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

Trivial upper bound on the number of k-multiplexes:
(
(kn)!
k!n

)d
.
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Motivation

Proposition

If k is odd and d and n are even then there exist d-dimensional latin
hypercubes of order n with no k-multiplexes.

Linear construction

Consider the Cayley table Q of the d-iterated group Z[d ]
n

qα = α1 + . . .+ αd mod n;

0 1
1 0

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
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Motivation

Theorem (T., 2015; Glebov, Luria, 2016)

The maximum number of transversals in d-dimensional latin hypercubes of
order n is asymptotically equal to

n!d−1

en
(1 + o(1))n as n→∞.

Theorem (Eberhard, 2017+)

If G is an abelian group of order n and (d + 1)
∑
g∈G

g = 0 then the number

of transversals in the d-iterated group G [d ] is asymptotically equal to

n!d−1

en
(1 + o(1))n as n→∞,

otherwise it has no transversals.
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Motivation

Question

Do iterated quasigroups of fixed order and large dimension have
asymptotically maximum number of transversals?

Conjecture (Ryser, 1967)

Every latin square of odd order has a transversal.

Conjecture (Wanless, 2011)

Every latin hypercube of odd dimension or odd order has a transversal.

Conjecture (Rodney)

Every latin square contains a 2-plex.
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Main results

Theorem (T., 2018+)

Let G be a binary quasigroup of order n.

1 For all odd d the d-iterated quasigroup G [d ] has a k-multiplex. If for
some even d ′ the quasigroup G [d ′] has a k-multiplex then quasigroups
G [d ] contain k-multiplexes for all d ≥ d ′.

2 There exists a constant c = c(G , k) such that if G [d ] has a

k-multiplex then for large d it has asymptotically c
(
(kn)!
k!n

)d
k-multiplexes.

Trivial upper bound on the number of k-multiplexes:
(
(kn)!
k!n

)d
.
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Main results

Corollary (T., 2018+)

Let G be a binary quasigroup of order n.

1 For all odd d the d-iterated quasigroup G [d ] has a transversal. If for
some even d ′ the quasigroup G [d ′] has a transversal then quasigroups
G [d ] contain transversals for all d ≥ d ′.

2 There exists a constant c = c(G ) such that if G [d ] has a transversal
then for large d it has asymptotically cn!d−1 transversals.

Corollary (T., 2018+)

For a given binary quasigroup G and large d , a typical k-multiplex in the
d-iterated quasigroup G [d ] is a k-plex that cannot be partitioned into
smaller plexes.
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then for large d it has asymptotically cn!d−1 transversals.

Corollary (T., 2018+)

For a given binary quasigroup G and large d , a typical k-multiplex in the
d-iterated quasigroup G [d ] is a k-plex that cannot be partitioned into
smaller plexes.
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Inception of transversals

0 3 1 2
3 0 2 1
2 1 0 3
1 2 3 0

0 3 1 2 1 2 0 3 3 1 2 0 2 0 3 1
3 0 2 1 2 1 3 0 1 3 0 2 0 2 1 3
2 1 0 3 3 0 1 2 0 2 3 1 1 3 2 0
1 2 3 0 0 3 2 1 2 0 1 3 3 1 0 2

3 0 2 1 2 1 3 0 0 2 1 3 1 3 0 2
0 3 1 2 1 2 0 3 2 0 3 1 3 1 2 0
1 2 3 0 0 3 2 1 3 1 0 2 2 0 1 3
2 1 0 3 3 0 1 2 1 3 2 0 0 2 3 1

1 2 3 0 3 0 1 2 2 3 0 1 0 1 2 3
2 1 0 3 0 3 2 1 3 2 1 0 1 0 3 2
0 3 1 2 2 1 3 0 1 0 2 3 3 2 0 1
3 0 2 1 1 2 0 3 0 1 3 2 2 3 1 0

2 1 0 3 0 3 2 1 1 0 3 2 3 2 1 0
1 2 3 0 3 0 1 2 0 1 2 3 2 3 0 1
3 0 2 1 1 2 0 3 2 3 1 0 0 1 3 2
0 3 1 2 2 1 3 0 3 2 0 1 1 0 2 3
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0 3 1 2 2 1 3 0 1 0 2 3 3 2 0 1
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0 3 1 2 2 1 3 0 3 2 0 1 1 0 2 3
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Proof method for transversals

A diagonal in a d-dimensional latin hypercube Q is a set l = (α1, . . . , αn)
hitting each hyperplane exactly ones.

A d-dimensional latin hypercube of order n has n!d−1 diagonals, and some
of them are transversals.

Given a multiset U of size n over a quasigroup G , denote by tU(d) the
number of diagonals l = (α1, . . . , αn) in the Cayley table Q of G [d ] such
that U = {qα1 , . . . , qαn}.

tU(d) =
∑
V

bU,V tV (d − 1),

where bU,V is the number of permutations W on G for which

U = V ∗W .
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Proof method for transversals

Z[1]
5 = 0 1 2 3 4

t01234(1) = 1; tU(1) = 0 for all other U.

Z[2]
5 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

t01234(2) = 15 = 15 · t01234(1).
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Proof method for transversals

Z[1]
5 = 0 1 2 3 4

t01234(1) = 1; tU(1) = 0 for all other U.

Z[2]
5 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

t00000(2) = . . . = t44444(2) = 1 = 1 · t01234(1).
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Proof method for transversals

Z[1]
5 = 0 1 2 3 4

t01234(1) = 1; tU(1) = 0 for all other U.

Z[2]
5 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

t00014(2) = t00023(2) = . . . = t44403(2) = t44412(2) = 5 = 5 · t01234(1).
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Proof method for transversals

Z[1]
5 = 0 1 2 3 4

t01234(1) = 1; tU(1) = 0 for all other U.

Z[2]
5 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

t00113(2) = t11224(2) = t22330(2) = t33441(2) = t00442(2) = 10 = 10·t01234(1).
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Proof method for transversals

Z[1]
5 = 0 1 2 3 4

t01234(1) = 1; tU(1) = 0 for all other U.

Z[2]
5 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

t01234(2) = 15 · t01234(1);

t00000(2) = . . . = t44444(2) = 1 · t01234(1);

t00014(2) = t00023(2) = . . . = t44403(2) = t44412(2) = 5 · t01234(1);

t00113(2) = t11224(2) = t22330(2) = t33441(2) = t00442(2) = 10 · t01234(1);

tU(2) = 0 for all other U.
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Proof method for transversals

Z[1]
5 = 0 1 2 3 4

y1(1) = t01234(1) = 1; y2(1) = y3(1) = y4(1) = 0.

Z[2]
5 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

y1(2) = t01234(2) = 15;

y2(2) = t00000(2) + . . .+ t44444(2) = 5;

y3(2) = t00014(2) + t00023(2) + . . .+ t44403(2) + t44412(2) = 50;

y4(2) = t00113(2) + t11224(2) + t22330(2) + t33441(2) + t00442(2) = 50.
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Proof method for transversals

y1(2) = 15 · y1(1);

y2(2) = 5 · y1(1);

y3(2) = 50 · y1(1);

y4(2) = 50 · y1(1).

Do the same for transversals in the 3-iterated group Z[3]
5 . . .

y1(3) = 15 · y1(2) + 120 · y2(2) + 30 · y3(2) + 20 · y4(2);

y2(3) = 5 · y1(2);

y3(3) = 50 · y1(2) + 30 · y3(2) + 40 · y4(2);

y4(3) = 50 · y1(2) + 60 · y3(2) + 60 · y4(2).
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Proof method for transversals


y1(d)
y2(d)
y3(d)
y4(d)

 =


15 120 30 20
5 0 0 0

50 0 30 40
50 0 60 60




y1(d − 1)
y2(d − 1)
y3(d − 1)
y4(d − 1)

 ;

Y (d) = A(Z5)Y (d − 1).

The number of transversals T (d) in the d-iterated group Z[d ]
5 is the first

component of the vector Y (d) obtained as the result of process

Y (d) = A(Z5)Y (d − 1),

where matrix A(Z5) does not depend on d and is derived from only the
group Z5.
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Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G ) has column sums n!
and (after normalization) defines an irreducible Markov process with
period at most 2.

Ergodic theorem

A Markov process with transition matrix A is irreducible and aperiodic if
and only if it converges to the stationary distribution with all nonzero
components.

The stationary distribution for an ergodic process with a matrix A is the
eigenvector of A for the largest eigenvalue.
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Proof method for transversals

Y (d) = A(Z5)Y (d − 1);

A(Z5) =


15 120 30 20
5 0 0 0

50 0 30 40
50 0 60 60

 .

The process defined by A(Z5) is aperiodic.

The number of transversals T (d) in the d-iterated group Z[d ]
5 converges to

c · 120d−1, where c > 0 is the first component of the normalized
eigenvector 1/125(24, 1, 40, 60)T for the largest eigenvalue λ = 120 of the
matrix A(Z5).

T (d) =
24

125
· 120d−1(1 + o(1)).
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Number of transversals in d-iterated groups and
quasigroups of small order

G \ d even odd

Z2 0 2d−1

Z3 2/3 · 6d−1 − 3d−2 2/3 · 6d−1 + 3d−2

Z4 0 3/8 · 24d−1 + 5 · 8d−2
Z2
2

3/8 · 24d−1 − 8d−2 3/8 · 24d−1 + 5 · 8d−2
G4 3/32 · 24d−1(1 + o(1))

Z5 24/125 · 120d−1(1 + o(1))

G5 24/625 · 120d−1(1 + o(1))

G 2
4 =

0 3 1 2
3 0 2 1
2 1 0 3
1 2 3 0

G 2
5 =

0 1 2 3 4
1 0 3 4 2
2 3 4 0 1
3 4 1 2 0
4 2 0 1 3
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Open questions

1 How can we estimate the constant c(G , k) in general and for a given
quasigroup G?

2 How are the constants c(G , k) for a given G related to each other for
different k?

3 Does the d-iterated group Z[d ]
n have the maximum number of

transversals (or k-plexes and k-multiplexes) among all d-iterated
quasigroups of order n (if it is nonzero)?
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Thank you for your attention!
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