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Definitions

A pair G = (X, «) is a binary quasigroup of order n if | X| = n and

Va,be X dlx,y e X: axx=b, yxa=b.
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A pair G = (X, «) is a binary quasigroup of order n if | X| = n and

Va,be X dlx,y e X: axx=b, yxa=b.

The Cayley table of a binary quasigroup G = a latin square L(G). J

The Cayley table of a binary quasigroup G of order 4

0123
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2 301
3210

A latin square of order n is an n x n table filled by n symbols so that each
line contains all n symbols.
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Definitions

A d-ary quasigroup f of order n is a d-ary operation on a set X of size n

such that the equation f(xi, ..., xy) = xo has a unique solution for any one
variable if all other d variables are specified arbitrarily.
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Definitions

A d-ary quasigroup f of order n is a d-ary operation on a set X of size n
such that the equation f(xi, ..., xy) = xo has a unique solution for any one
variable if all other d variables are specified arbitrarily.

The Cayley table of a d-ary quasigroup f of order n = a d-dimensional
latin hypercube Q(f) of order n. J

A 3-dimensional latin hypercube of order 4

012 3{1032|/23 013210
103 2012 3/3 2102301
23013 210/0123|1032
3 21023011 032{0123
If 19 = {(a1,...,aq) 1 a; €{0,...,n—1}} then a d-dimensional matrix

A of order n'is an array (aa)acig, @ € R. A line is a 1-dimensional
submatrix of A, and a hyperplane is a (d — 1)-dimensional submatrix.

A d-dimensional latin hypercube of order n is a multidimensional matrix
filled by n symbols so that each line contains all different symbols.
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Definitions

Given a binary quasigroup G = (X, *) of order n, the d-iterated
quasigroup G9! is a d-ary quasigroup f[d](xl, ..., Xq) of order n such that
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Definitions

Given a binary quasigroup G = (X, *) of order n, the d-iterated
quasigroup Gl is a d-ary quasigroup f[d](xl, ..., Xq) of order n such that

f[2](X1,X2) = X1 % X0, f[i](xl, ceXi) = f[i_l](xl, Cey Xi—1) * X

The Cayley table of a binary quasigroup G of order 4

0123
1 0 3 2
2 301
3210

The Cayley table of the 3-iterated 3-ary quasigroup GU!

0123103223013 210
103 2|01 23/3 21023201
23013 210/0123|1032
3 21¢0(j23 0110320123
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Definitions

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the
corresponding d-ary quasigroup f of order n)
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Definitions

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the
corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn
entries such that each hyperplane and each symbol of Q is covered by K
exactly k times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

N W= O
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Definitions

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the
corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn
entries such that each hyperplane and each symbol of Q is covered by K
exactly k times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

0123 0123103223013 210
1 0 3 2 103 2/0123/321¢0[2301
3201 23013 210/0123/1032
2310 321023011 032/0123
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Definitions

A k-multiplex K (a k-plex) in a latin hypercube Q of order n (or in the
corresponding d-ary quasigroup f of order n) is a multiset (a set) of kn
entries such that each hyperplane and each symbol of Q is covered by K
exactly k times.

A transversal is a 1-plex.

A 2-plex in a latin squre and a pair of transversals in a latin cube

0123 0123103223013 210
1 0 3 2 103 2/0123/321¢0[2301
3201 23013 210/0123/1032
2310 321023011 032/0123

d
Trivial upper bound on the number of k-multiplexes: <(k")!> .
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Motivation

Proposition

If k is odd and d and n are even then there exist d-dimensional latin
hypercubes of order n with no k-multiplexes.
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Motivation
Proposition

If k is odd and d and n are even then there exist d-dimensional latin
hypercubes of order n with no k-multiplexes.

Linear construction

Consider the Cayley table @ of the d-iterated group ZE,d]

ga =1+ ...+ag mod n;

Let a multiset {al,..., %"} be k-multiplex in Z1.

an,— )§é0 mod n.

LA . n(n—1)
Z(a’l—i—...—i—ag) dk———= 3 =0 mod n.
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Motivation

Theorem (T., 2015; Glebov, Luria, 2016)

The maximum number of transversals in d-dimensional latin hypercubes of
order n is asymptotically equal to

nld—1
o (14 0(1))" as n — oo.
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Motivation

Theorem (T., 2015; Glebov, Luria, 2016)

The maximum number of transversals in d-dimensional latin hypercubes of
order n is asymptotically equal to

nld—1

(14 0(1))" as n — oo.

en

Theorem (Eberhard, 2017+)

If G is an abelian group of order n and (d +1) > g = 0 then the number
geG

of transversals in the d-iterated group Gl is asymptotically equal to

nld—1

(14 0(1))" as n — oo,

en

otherwise it has no transversals.
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Motivation

Question

Do iterated quasigroups of fixed order and large dimension have
asymptotically maximum number of transversals?
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Motivation

Question

Do iterated quasigroups of fixed order and large dimension have
asymptotically maximum number of transversals?

Conjecture (Ryser, 1967)

Every latin square of odd order has a transversal.

Conjecture (Wanless, 2011)

Every latin hypercube of odd dimension or odd order has a transversal.

Conjecture (Rodney)

Every latin square contains a 2-plex.
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Main results

Theorem (T., 2018+)
Let G be a binary quasigroup of order n.

© For all odd d the d-iterated quasigroup Gl has a k-multiplex. If for
some even d’ the quasigroup Gl has a k-multiplex then quasigroups
Gl contain k-multiplexes for all d > d’.
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d
k-multiplex then for large d it has asymptotically ¢ (%?,2')
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Main results

Corollary (T., 2018+)
Let G be a binary quasigroup of order n.
@ For all odd d the d-iterated quasigroup Gl has a transversal. If for
some even d’ the quasigroup Gl has a transversal then quasigroups
Gl9l contain transversals for all d > d’.
@ There exists a constant ¢ = ¢(G) such that if Gl has a transversal
then for large d it has asymptotically cn!“~! transversals.
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Main results

Corollary (T., 2018+)
Let G be a binary quasigroup of order n.

@ For all odd d the d-iterated quasigroup Gl has a transversal. If for
some even d’ the quasigroup Gl has a transversal then quasigroups
Gl contain transversals for all d > d'.

@ There exists a constant ¢ = ¢(G) such that if Gl has a transversal
then for large d it has asymptotically cn!“~! transversals.

Corollary (T., 2018+)

For a given binary quasigroup G and large d, a typical k-multiplex in the
d-iterated quasigroup Gl9 is a k-plex that cannot be partitioned into
smaller plexes.
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Inception of transversals
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Inception of transversals

1

3 0 2

1 2 3 0
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Proof method for transversals

A diagonal in a d-dimensional latin hypercube Q is a set / = (al,...,a")
hitting each hyperplane exactly ones.
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A diagonal in a d-dimensional latin hypercube Q is a set / = (al,...,a")
hitting each hyperplane exactly ones.

A d-dimensional latin hypercube of order n has n!“~! diagonals, and some
of them are transversals.
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Proof method for transversals

A diagonal in a d-dimensional latin hypercube Q is a set / = (al,..., a")
hitting each hyperplane exactly ones.

A d-dimensional latin hypercube of order n has n!9~! diagonals, and some
of them are transversals.

Given a multiset U of size n over a quasigroup G, denote by ty(d) the
number of diagonals / = (al,...,a") in the Cayley table @ of Gl9l such
that U={qg,1,...,qan}.
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Proof method for transversals

A diagonal in a d-dimensional latin hypercube Q is a set / = (al,..., a")
hitting each hyperplane exactly ones.

A d-dimensional latin hypercube of order n has n!9~! diagonals, and some
of them are transversals.

Given a multiset U of size n over a quasigroup G, denote by ty(d) the

number of diagonals / = (al,...,a") in the Cayley table @ of Gl9l such

that U={qg,1,...,qan}.

tu(d) = Z bU7vtv(d — 1),
%
where by v is the number of permutations W on G for which

U=VxW.
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Proof method for transversals

ZM=012234
to1234(1) = 1;

ty(1) = 0 for all other U.
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Proof method for transversals

ZM=012234
t01234(1) =1; tu(l) = 0 for all other U.

012 3 4
12340
78= 23 4 01
34012
4012 3

t01234(2) = 15 = 15 - tp1234(1).

[} = =
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Proof method for transversals

ZM=012234
t01234(1) =1; tu(l) = 0 for all other U.

01 2 3 4
1 2 3 4 0
8= 23 4 01
3401 2
4 01 2 3
t00000(2) = ... = ta4444(2) =1 =1 tp1234(1).
[} = = = = DA
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Proof method for transversals

ZM=01234
to1234(1) =1;  ty(1l) = 0 for all other U.

01 2 3 4
1 2 3 40
B =23 40 1
34 01 2
4 0 1 2 3
to0014(2) = t00023(2) = ... = t24403(2) = ta4412(2) =5 =5 - to1234(1).
Oy @ <=r» <=» E DA
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Proof method for transversals

ZM=01234
to1234(1) =1;  ty(1l) = 0 for all other U.

0123 4
123 40
8= 2 3 4 0 1
34012
40123

t00113(2) = t11224(2) = t22330(2) = t33441(2) = to04a42(2) = 10 = 10-tp1234(1).

[} = =
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Proof method for transversals

ZM=01234
t01234(1) =1; tu(l) = 0 for all other U.

0123 4
12340
B =23 4 0 1
340 1 2
40123

t01234(2) = 15 - to1234(1);
t00000(2) = ... = t44444(2) = 1 - tp1234(1);
t00014(2) = t00023(2) = ... = t42403(2) = ta4412(2) =5 - to1234(1);
t00113(2) = t11224(2) = t22330(2) = t33441(2) = to0as2(2) = 10 - to1234(1);
ty(2) = 0 for all other U.

[} = =
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Proof method for transversals

Z=01234
yi(l) =to123a(1) = 1;  yo(1) = y5(1) = yu(1) = 0.

0123 4
12340
8= 234 0 1
340 1 2
401 23

v1(2) = to1234(2) = 15;
¥2(2) = too000(2) + - - - + ta4444(2) = 5;
v3(2) = too014(2) + t00023(2) + ... + t44403(2) + taas12(2) = 50;
va(2) = to0113(2) + t11224(2) + t22330(2) + t33441(2) + tooss2(2) = 50.
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Proof method for transversals

y1(2) =15 y1(1);
y2(2) =5-y1(1);
y3(2) =50 y1(1);
ya(2)

=50 y1(1).

=] 5 = E DAy
Anna Taranenko Transversals in iterated quasigroups



Proof method for transversals

y1(2) =15+ y1(1);
y2(2) =5 y1(1);

y3(2) =50 y1(1);
ya(2) =50 y1(1).

Do the same for transversals in the 3-iterated group Z[53] .

=] 5 = £ DA
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Proof method for transversals

y1(2) =15 y1(1);
y2(2) =5 y1(1);
y3(2) =50 y1(1);
ya(2) =50 y1(1).

Do the same for transversals in the 3-iterated group Z[53] .

y1(3) =15 y1(2) +120 - y»(2) +30 - y5(2) +20 - y4(2);
¥2(3) =5 y1(2);
y3(3) =50 y1(2) +30- y3(2) +40 - y4(2);
va(3) =50 y1(2) + 60 y3(2) + 60 - y4(2).
Or «Fr «=> <E BEYe



Proof method for transversals

ya(d) 15 120 30 20 vi(d —1)
wid | _[5 0 0 o0 ya(d — 1)
y3(d) 50 0 30 40 y3(d — 1)
va(d) 50 0 60 60 va(d — 1)
[} = =

it
«
€

DQC
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Proof method for transversals

y1(d) 15 120 30 20 yi(d —1)
ye(d) | _[ 5 0 0 0 y2(d — 1)
y3(d) 50 0 30 40 y3(d — 1)
ya(d) 50 0 60 60 ya(d — 1)

Y(d) = A(Zs)Y(d — 1).
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Proof method for transversals

yi(d) 15 120 30 20 yi(d —1)
ye(d) | _[ 5 0 0 0 y2(d = 1)
y3(d) 50 0 30 40 ya(d — 1)
ya(d) 50 0 60 60 ya(d — 1)

Y(d) = A(Zs)Y(d — 1).

The number of transversals T(d) in the d-iterated group ng] is the first
component of the vector Y(d) obtained as the result of process

Y(d) = A(Zs)Y(d — 1),

where matrix A(Zs) does not depend on d and is derived from only the
group Zs.
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Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G) has column sums n!

and (after normalization) defines an irreducible Markov process with
period at most 2.
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Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G) has column sums n!
and (after normalization) defines an irreducible Markov process with
period at most 2.

Ergodic theorem

A Markov process with transition matrix A is irreducible and aperiodic if
and only if it converges to the stationary distribution with all nonzero
components.
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Markov processes and ergodic theorem

Lemma

For every quasigroup G of order n the matrix A(G) has column sums n!
and (after normalization) defines an irreducible Markov process with
period at most 2.

Ergodic theorem

A Markov process with transition matrix A is irreducible and aperiodic if
and only if it converges to the stationary distribution with all nonzero
components.

The stationary distribution for an ergodic process with a matrix A is the
eigenvector of A for the largest eigenvalue. J
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Proof method for transversals
Y(d) = A(Zs)Y(d — 1);

15 120 30 20
5 0 0 O
50 0 30 40
50 0 60 60

AlZs) =

The process defined by A(Zs) is aperiodic.
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Proof method for transversals
Y(d) = A(Zs)Y(d — 1);

15 120 30 20
5 0 0 O
50 0 30 40
50 0 60 60

A(Zs) =

The process defined by A(Zs) is aperiodic.

The number of transversals T(d) in the d-iterated group ng] converges to
¢ -1209-1, where ¢ > 0 is the first component of the normalized

eigenvector 1/125(24,1,40,60)7 for the largest eigenvalue A = 120 of the
matrix A(Zs).
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Proof method for transversals
Y(d) = A(Zs)Y(d — 1);

15 120 30 20
5 0 0 O
50 0 30 40
50 0 60 60

A(Zs) =

The process defined by A(Zs) is aperiodic.

The number of transversals T(d) in the d-iterated group ng] converges to
¢ -1209-1, where ¢ > 0 is the first component of the normalized

eigenvector 1/125(24,1,40,60)7 for the largest eigenvalue A = 120 of the
matrix A(Zs).

24
T(d) = 135
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-120971(1 4 o(1)).



Number of transversals in d-iterated groups and
quasigroups of small order

G\d even odd
Z 0 2d-1
Z3 2/3 K 6d—1 _ 3d—2 2/3 K 6d—1 + 3d—2
Zy, 0 3/g. 2491 1 5.89-2
75 |3/8-249"1 —89-2[3/g.249"1 1 5.89-2
Gy 3/32-24971(1 + o(1))
Zs 24/125 - 12097 1(1 + o(1))
Gs 24/625 - 1209 1(1 + o(1))
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Number of transversals in d-iterated groups and

quasigroups of small order

G\d even odd
Z 0 2d-1
Z3 2/3 K 6d—1 _ 3d—2 2/3 K 6d—1 + 3d—2
Zy, 0 3/g. 2491 1 5.89-2
75 |3/8-249"1 —89-2[3/g.249"1 1 5.89-2
Gy 3/32-24971(1 + o(1))
Zs 24/125 - 12097 1(1 + o(1))
Gs 24/625 - 1209 1(1 + o(1))
0 312
3021
2 __
Ci=19 103
1 230
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Number of transversals in d-iterated groups and
quasigroups of small order

G\d even odd
Z 0 2d-1
Zz | 23-691—-39"2 ] 2/3.69°1 4392
Zy, 0 3/g. 2491 1 5.89-2
73 |3/8-249"1 8972 [3/g. 24971 4 5.892
Gy 3/32-24971(1 + o(1))
Zs 24/125 - 12097 1(1 + o(1))
Gs 24/625 - 1209 1(1 + o(1))
03 1 2 012 3 4
30 2 1 1 03 42
G} = G2=23 40 1
2 103
L > 30 34120
4 201 3
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Open questions

quasigroup G?

© How can we estimate the constant ¢(G, k) in general and for a given
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Open questions

© How can we estimate the constant ¢(G, k) in general and for a given
quasigroup G?

@ How are the constants ¢(G, k) for a given G related to each other for
different k7
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Open questions

© How can we estimate the constant ¢(G, k) in general and for a given
quasigroup G7

@ How are the constants ¢(G, k) for a given G related to each other for
different k?

© Does the d-iterated group ZLd] have the maximum number of
transversals (or k-plexes and k-multiplexes) among all d-iterated
quasigroups of order n (if it is nonzero)?
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Thank you for your attention!




